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ABSTRACT

Sweep method is one of the most robust techniques to generate hexahedral meshes in extrusion volumes. One of
the main issues to be dealt by any sweep algorithm is the projection of a source surface mesh onto the target
surface. This paper presents a new algorithm to map a given mesh over the source surface onto the target surface.
This projection is carried out by means of a least-squares approximation of an affine mapping defined between the
parametric spaces of the surfaces. Once the new mesh is obtained on the parametric space of the target surface, it
is mapped up according to the target surface parameterization. Therefore, the developed algorithm does not require
to solve any root finding problem to ensure that the projected nodes are on the target surface. Afterwards, this
projection algorithm is extended to three dimensional cases and it is used to generate the inner layers of elements in
the physical space.
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1. INTRODUCTION

Hexahedral mesh generation has been an important
and active research area over the last decade. Sev-
eral algorithms has been devised in order to generate
hexahedral meshes for any arbitrary geometry such as
(see [1, 2] for a detailed survey): grid based methods
[3, 4, 5], decomposition based approaches [6, 7, 8], ad-
vancing front techniques [9], or dual methods [10, 11].
However, a fully automatic hexahedral mesh genera-
tion algorithm for any arbitrary geometry is still way
off. Moreover, further research has still to be devel-
oped in order to work out a general purpose algorithm
that, given any volume, generates high quality hexa-
hedral elements at low cost (both in cpu and in user
interaction time).

Therefore, special attention has been focused on ex-
isting algorithms that decompose the entire geometry
into several simpler pieces (assembly models). These
smaller volumes can be easily meshed by well-known
methods that obtain an outstanding performance in

these simpler volumes, such as: mapping [12], submap-
ping [13], and sweeping [14, 15, 16, 17, 18].

Most of the CAD commercial packages allow genera-
tion of volumes by extrude, or sweep, a surface along
a delimited axis. These one-to-one sweep volumes are
defined by a source surface, a target surface and a se-
ries of linking-sides (see figure 1). Note that the source
and target surfaces may have different areas and cur-
vatures. Moreover, there are no restrictions on the
number of edges that describe these surfaces. How-
ever, they must be topologically equivalent. That is,
they must have the same number of holes and logical
sides. Furthermore, linking-sides have to be mappable.
Hence, having only four logical sides.

Taking into account the definition of an extrusion ge-
ometry, it is reasonable to generate the volume mesh
by sweeping a given discretization of the source sur-
face along the volume until it reaches the target sur-
face. Therefore, the traditional procedure to generate
an all–hexahedral mesh by sweeping is decomposed in
the following four steps:



source surface

target surface

linking sides

sweep direction

Figure 1: Example of a two and a half dimensional vol-
ume.

1. Generation of a quadrilateral mesh over the
source surface.

2. Projection of the source mesh onto the target sur-
face (ensuring that both source and target mesh
have same connectivity).

3. Generation of a structured quadrilateral mesh
over the linking-sides.

4. Generation of the inner layers of nodes and ele-
ments.

Note that surface mesh generation is involved in the
first three steps. However, hexahedral elements are
only generated in the last one. Several robust quadri-
lateral surface mesh generation algorithms have been
developed which greatly simplify the meshing process
involved in the first step [19, 20, 21, 22]. The gridding
of the linking-sides involved in the third step can be
generated using any standard structured quadrilateral
surface mesh generator [2, 23]. Hence, the two main is-
sues to be dealt by any sweep algorithm are the second
and fourth step. In both steps, the meshes to be gen-
erated (i.e. the mesh over the target surface and the
inner layer meshes) must have the same connectivity
as the source surface mesh.

Several algorithms have been developed to map
meshes between surfaces [24]. Most of them involve
an orthogonal projection of nodes onto the target sur-
face. Note that these projections are expensive from
a computational point of view since it is necessary to
solve as many root finding problems as internal points
are on the grid of the source surface. In order to over-
come this drawback, this paper presents a new and ef-
ficient algorithm to map a given mesh over the source
surface onto the target surface. This projection is de-
termined by means of a least-squares approximation
of an affine mapping defined between the parametric
representation of the loops of boundary nodes of the

Figure 2: Available data for generating the inner layers
of nodes.

cap surfaces. Once the new mesh is obtained on the
parametric space of the target surface, it is mapped
up according to the target surface parameterization.

The developed algorithm to map meshes between cap
surfaces can not be directly applied in order to gener-
ate the inner layer of nodes, since these layers are not
defined by parametric surfaces. In fact, the available
data to determine the position of the inner layers of
nodes is: 1.- the loops of nodes on the linking sur-
faces, and 2.- the cap surface meshes (see figure 2).
Hence, the previous projection algorithm is extended
to three dimensional space and it is used to generate
the inner layers of elements in the physical space. The
obtained algorithm becomes analogous to the method
proposed in [14]. In order to improve the quality of the
meshes generated on each layer, the inner nodes are lo-
cated using a weighted least-squares approximation of
the transformation between the boundary nodes of the
cap surfaces and the boundary nodes of the layer as in
[16].

2. SWEEP ALGORITHM

In order to ensure that the one-to-one sweep algorithm
can be applied, the following requirements have to be
accomplished:

1. Source and target surfaces must be topologically
equivalent (they must have the same number of
holes and logical sides).

2. Linking-sides must be mappable, or equivalently,
defined by four logical sides.

3. Sweep volume has one source surface and one tar-
get surface.

4. Sweep volume must be defined by only one axis.

A detailed presentation on constraints which must be
met for a volume to be sweepable, in a generic sense,
are presented in [25].



Notice that the algorithm could be generalized to
multi-source / multi-target geometries following the
cooper tool algorithm [16, 17]. Moreover, it may also
be extended to multi-axis sweep directions according
to [26]. However, these objectives are beyond the
scope of the present work.

Sweep volumes are usually defined by commercial
CAD applications. Hence, source and target surfaces
may be trimmed surfaces (they allow a more flexible
description of surfaces with holes or complex bound-
aries). In order to properly deduce the projection al-
gorithm between cap surfaces, some details of the def-
inition of trimmed surfaces have to be revised. In par-
ticular, it is important to point out that the domain
of a trimmed surface, in general, is not a rectangle
[a, b] × [c, d] ⊂ R2 in the parametric space. To be
more accurate, let ϕ : V ⊂ R2 → R3 be the para-
metric definition of a surface, where V is an open and
bounded set of the plane. Let DS ⊂ V be a closed
subset of V . Then, a trimmed surface, S, is the im-
age of the restriction of ϕ at the subset DS . That is,
ϕ|DS : DS ⊂ V → S ⊂ R3, where S = ϕ(DS).

From here to the end of this work we assume that a
geometrical kernel is available, such that surfaces are
parameterized. In fact, this kernel must provide query
functions for obtaining the physical coordinates of a
parametric point. This requirement is necessary if the
parametric space projection algorithm, presented in
section 2.2, has to be implemented.

2.1 Source surface mesh generation

In standard industrial applications, surfaces are de-
fined using any CAD software. Therefore, the quadri-
lateral mesh generator used to discretize the source
surface has to be able to work with trimmed surfaces.
In this paper, the source surface is discretized using an
extended version to parametric surfaces of a previously
developed unstructured quadrilateral mesh generator
[21, 22].

2.2 Target surface mesh generation: the
projection algorithm

Once the source surface, S, is meshed the next step is
to map it onto the target surface, T . As it has been
previously noted, most of the developed algorithms to
map meshes between surfaces have to solve several root
finding problems. In order to overcome this drawback
a new and efficient algorithm is devised to map meshes
between trimmed surfaces. In fact, the mapping is
defined between the parametric spaces of the surfaces,
DS and DT . It will be proved that determining this
mapping is equivalent to finding a projection of meshes
between surfaces in the physical domain. Then, the
obtained mesh is mapped up according to the target

surface parameterization. For some surfaces, it may
be necessary to smooth the new surface mesh. Note
that this smoothing is also needed in other methods
[24].

First of all, we will show that determining a projection
between trimmed surfaces is equivalent to finding out
a projection between their parametric spaces. To this
end, assume that the source and target surfaces are
trimmed surfaces. Let

ϕS : VS ⊂ R2 → R3

ϕT : VT ⊂ R2 → R3

be their extended parameterization, where VS and VT

are two open and bounded sets of R2. If ϕS and ϕT

are continuous and injective, the Brouwer’s theorem
on invariance of domain [27] states that they are also
open mappings. Since they are open mappings, their
restrictions (that is, the definition of the trimmed sur-
faces)

ϕS |DS : DS ⊂ VS → S ⊂ R3, S := ϕS(DS)

ϕT |DT : DT ⊂ VT → T ⊂ R3, T := ϕT (DT )

are homeomorphisms in DS and DT respectively.

Recall that our aim is to determine a mapping ψ̃ :
S → T such that, given a mesh, MS , over the source
surface, it yields a mesh, MT , onto the target surface
with the same connectivities. Since S and T have the
same topology it is reasonable to assume that ψ̃ is also
an homeomorphism.

Since ϕS |DS , ϕT |DT and ψ̃ are homeomorphisms, it is
possible to define

ψ := ϕT |−1
DT

◦ ψ̃ ◦ ϕS |DS ,

such that

S ⊂ R3 ψ̃−−−−−−→ T ⊂ R3

ϕS |DS ↑ ↑ ϕT |DT

DS ⊂ R2 ψ−−−−−−→ DT ⊂ R2

(1)

Under these conditions, the diagram of mappings (1)
is a commutative diagram. Hence, it is feasible to find
first the projection ψ, homeomorphism between the
parametric domains DS and DT , and then, mapping
up the new mesh onto the target surface, T , according
to its parameterization, ϕT |DT , as

ψ̃ = ϕT |DT ◦ ψ ◦ ϕS |DS

−1. (2)

Note that it is not required to deduce the analytical
expression of the inverse function ϕS |DS

−1. It suffices
to store the pre-images of nodal coordinates of MS by
ϕS |DS . This can be achieved if the application stores
both the physical and the parametric coordinates of
each mesh node.



~n

Figure 3: Boundary nodes of a non simple connected
surface.

Therefore, special attention has to be focused on to
settle the projection between DS and DT from the
available data. Let n, with n ≥ 3, be the number of
nodes on all the boundary loops of the cap surfaces.
We assume that each cap surface is delimited by one
outer boundary and one inner boundary for each hole.
These boundaries are previously meshed, and a series
of loops of nodes on the boundary of the surface are
obtained (see figure 3). Let US = {ui

S}i=1,...,n ⊂ R2

and UT = {ui
T }i=1,...,n ⊂ R2 be the parametric coor-

dinates of all boundary nodes of the source and tar-
get surfaces, respectively. It is important to point out
that the physical coordinates of these points (i.e. their
images by ϕS |DS and ϕT |DT ) do not necessarily de-
termine planar loops. The goal is to find a function ψ
such that

ψ(ui
S) = ui

T , i = 1, . . . , n. (3)

Notice that it has only been required that the function
ψ be a homeomorphism.

~n In this algorithm, the homeomorphism ψ is approx-
imated by an affine mapping

uT = ψ(uS) ≈ A(uS − uarb
S ) + b, (4)

where uS and uT are points on DS and DT respec-
tively, A is a linear transformation with the origin at
one arbitrary point uarb

S and b is a translation vec-
tor. Unfortunately, given any two loops of boundary
data, there is not an affine mapping that verifies (3).
Therefore, we look for a linear transformation, A, and
a translation vector b that fits in the least-squares
sense the conditions (3). Hence, A and b are such
that minimizes

F (A,b) =

n∑
i=1

∥∥∥ui
T −

(
A(ui

S − uarb
S ) + b

)∥∥∥
2

. (5)

It is straightforward to show that if

uarb
S := uc

S =
1

n

n∑
i=1

ui
S ,

then

b = uc
T =

1

n

n∑
i=1

ui
T . (6)

Therefore, the following coordinates are defined

uS = uS − uc
S , uT = uT − uc

T , (7)

such that (4) can be written as

uT = ψ(uS) ≈ AuS , (8)

where ψ is the expression of ψ in the new coordinates.
Now the minimization problem (5) is

F (A) =

n∑
i=1

∥∥∥ui
T −Aui

S

∥∥∥
2

. (9)

Since A is a linear transformation, it can be written
as

A =

4∑
i=1

λiBi, (10)

where

B1 =

(
1 0
0 0

)
, B2 =

(
0 1
0 0

)
,

B3 =

(
0 0
1 0

)
, B4 =

(
0 0
0 1

)
,

(11)

is a base of the linear transformations from R2 to R2,
and λi ∈ R, with i = 1, . . . , 4.

If the scalar product of two functions

f : US ⊂ R2 → R2

g : US ⊂ R2 → R2,

is defined as

< f , g > :=

n∑
i=1

< f(ui
S), g(ui

S) >R2

=

n∑
i=1

f(ui
S)T · g(ui

S),

(12)

then the normal equations of the least-squares problem
(9) are

Nλ = d, (13)

where Ni,j =< Bi,Bj >=
∑n

k=1(Biu
k
S)T · Bju

k
S and

di =< Bi, ψ >=
∑n

k=1(Biu
k
S)T · uk

T , with i = 1, . . . , 4
and j = 1, . . . , 4.

The matrix N is non-singular if and only if not all the
points in US are aligned. Therefore, the system (13)
has a unique solution, λ0. From the numerical solu-
tion, λ0, of the linear system (13) the linear transfor-
mation A0 =

∑n
i=1 λ0

i Bi can be determined. There-
fore, using A0 and equations (4) and (6), the following
affine mapping can be established

ψ0(uS) := A0(uS − uc
S) + uc

T (14)



In conclusion, an affine mapping (14) between para-
metric spaces has been found that fits, in the least-
squares sense, the loops of boundary data. This trans-
formation can be used to map meshes from DS to DT .
Finally, to obtain the mesh MT it is only needed to
map up the nodes onto the target surface T . To this
end, an according to (2), we define

ψ̃0(p) := ϕT |DT

(
ψ0(ϕS |DS

−1(p)
))

, p ∈ S. (15)

Note that, since the values of ϕS |DS

−1 are known in
all nodes of MS , the new mesh on the target surface
can be defined as

MT := ψ̃0(MS).

2.3 Linking-sides mesh generation

Since linking-sides are always defined by four logi-
cal sides (each logical side can be composed by sev-
eral edges), they can be meshed using any standard
structured quadrilateral mesh algorithm, for instance,
transfinite mapping (TFI) [2]. In order to apply the
TFI method it is required that opposite logical sides
will have the same number of nodes. It is important
to have high quality structured meshes on the linking-
sides. Note that these meshes determine the loops of
nodes that are used later to generate the inner volume
nodes in a layer by layer procedure. Thus, if these sur-
face meshes contains folded or low quality elements,
then tangled meshes, reverse oriented or low quality
hexahedral elements are obtained.

A hard test for a sweep algorithm is to mesh an ex-
trusion volume with an S-shaped changing sweep di-
rection, see figure 4. It is well known that obtaining
a good structured mesh over an S-shaped surface is
non–trivial. If nodes are generated equidistant along
the edges of the S-shaped surface, then some segments
of the structured surface mesh cross over each other,
see figure 4(a). Thus, folded quadrilateral elements
are obtained in the middle part of the surface mesh.
Therefore, tangled hexahedral elements are generated
inside of the sweep volume.

To solve this drawback, a smoothing algorithm can be
used. This smoother has to be able to untangle ele-
ments and improve the mesh quality by moving inner
nodes and sliding the boundary nodes along the edges.
Another alternative, such that no mesh smoothing is
required, is to generate nodes along S-shaped edges in
such a way that the distance between opposite nodes
is minimized. Hence, we have implemented an edge
mesher procedure that is able to “follow” nodes on
the opposite edge of the S-shaped surface. Using this
procedure, consecutive joining segments will not cross
each other at the middle part of the surface, see figure
4(b). The details of this edge mesher are out of the
scope of this work.

(a) (b)

Figure 4: S-shaped sweep volume. (a) equidistant nodes
on the edges and folded elements; (b) well positioned
edge nodes for the linking-sides structured mesh genera-
tion.

2.4 Inner nodes and elements generation

Once all boundaries are meshed, inner nodes of the
extrusion volume have to be generated. These nodes
have to be placed, layer by layer, along the sweep di-
rection. Each layer is delimited by a several loops of
nodes that belongs to the structured meshes of the
linking-sides (see figure 2). In fact, for every layer
there is one outer loop, and one inner loop for each
hole in the sweep volume. Note that the method de-
veloped in section 2.2 can not be used here because no
surface parameterization, ϕT |DT , is available for these
layers. To this end, the method developed in section
2.2 is extended to R3 and a weighted least-squares ap-
proximation is developed, similar to those proposed in
[14, 15, 16].

Assume that m−1 inner levels of nodes have been gen-
erated on the linking-sides along the sweep direction
(see figure 5). Therefore, m − 1 layers of inner nodes
have to be generated. Let X0 = {xi

0}i=1,...,n ⊂ R3,
Xm = {xi

m}i=1,...,n ⊂ R3 and Xk = {xi
k}i=1,...,n ⊂ R3

with k = 1, . . . , m − 1 be the physical coordinates of
the boundary nodes of: the source surface (level 0),
the target surface (level m) and the k-th level, respec-
tively. For a given level k, with k = 1, . . . , m − 1, we
look for a function φ such that

xi
k = φ(xi

0), i = 1, . . . , n. (16)

As in section 2.2, φ is approximated by an affine map-
ping, concretely

xk = φ(x0) ≈ A(x0 − xc
0) + xc

k, (17)

where x0 and xk are points on the levels 0 and k re-
spectively, xc

0 = 1
n

∑n
i=1 xi

0, xc
k = 1

n

∑n
i=1 xi

k and A
is a linear transformation with its origin at xc

0. For
convenience, let

x0 = x0 − xc
0, xk = xk − xc

k. (18)

Then, (17) can be expressed as

xk = φ(x0) ≈ Ax0, (19)
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Figure 5: Discretization of a linking side using m − 1
inner levels.

where φ is the expression of φ in the new coordinates
(18). Similar to section 2.2, a least-squares fitting of
the boundary data is performed in order to find a lin-
ear transformation, that minimizes

F (A) =

n∑
i=1

‖xi
k −Axi

0‖2 (20)

Since A is a linear transformation, it can be written
as a linear combination of a base of the linear trans-
formations from R3 to R3

A =

9∑
i=1

λiBi, (21)

where λi ∈ R, with i = 1, . . . , 9, and

B1 =




1 0 0
0 0 0
0 0 0


, B2 =




0 1 0
0 0 0
0 0 0


,

B3 =




0 0 1
0 0 0
0 0 0


, B4 =




0 0 0
1 0 0
0 0 0


,

B5 =




0 0 0
0 1 0
0 0 0


, B6 =




0 0 0
0 0 1
0 0 0


,

B7 =




0 0 0
0 0 0
1 0 0


, B8 =




0 0 0
0 0 0
0 1 0


,

B9 =




0 0 0
0 0 0
0 0 1


.

(22)

The normal equations of the least-squares problem
(20) defined by the base (22) and the extension to
R3 of the scalar product (12) are

Nλ = d, (23)

where Ni,j =< Bi,Bj > and di =< Bi, φ >, with
i = 1, . . . , 9 and j = 1, . . . , 9.

Note that N is singular if and only if all points
{xi

0}i=1,...,n are coplanar with the origin. Unfortu-
nately, if the initial loop of points {xi

0}i=1,...,n is pla-
nar, then {xi

0}i=1,...,n are located on a plane that in-
cludes the origin. Therefore, N is singular in this case.
To overcome this problem, the coordinate system pro-
posed in [14] is used

x0 = x0 − (2xc
0 − xc

k), xk = xk − xc
0. (24)

It is known that in these new coordinates the matrix
N is not singular although the boundary of the source
surface is planar (except for degenerated geometries).
Using these new coordinates a least-squares approxi-
mation of the boundary data can be done such that
equation (20) is also minimized. That is, the normal
equations (23) can also be written in the new basis
(24) and the same numerical method can be used to
solve the 9× 9 linear system.

Let λ0 be the computed solution of the linear sys-
tem (23). Using (24), (21), and (19), a least squares
approximation of the projection between the source
surface and the k-th level can be written as

φ0
k(x0) := A0(x0 − 2xc

0 + xc
k) + xc

0 (25)

where A0 is the linear transformation corresponding
to the solution λ0 by (21), and x0 is any point of the
source surface mesh.

Note that a similar process could be defined using the
target surface as initial surface instead of the source
surface. Hence, the nodes of the k-th level can be
computed as

φm
k (xm) := Am(xm − 2xc

m + xc
k) + xc

m, (26)

where xm is any point of the target surface mesh.

Given two meshes, MS and MT , over the source and
target surfaces, respectively, equations (25) and (26)
allows to obtain two different maps of these surfaces
to the k-th level. Therefore, and similar to [16], the
following weighted transformation is defined

φk(p) :=

(
1− k

m

)
φ0

k(p) +
k

m
φm

k

(
ψ̃0(p)

)
, (27)

where p ∈MS , k = 1, . . . , m− 1, and ψ̃0 is the trans-
formation defined in (15). For each level, we have to
compute φ0

k and φm
k . In order to reduce the computa-

tional cost of the method, and do not recompute the
set {ψ̃0(p) ∈ R3 | p ∈MS} for each level, the mapping
relationship between nodes on MS and their images
on MT can be stored once source surface mesh is pro-
jected on the target surface. In fact, it suffices to store
the sequence of nodes in MT in the same order as the
corresponding nodes in MS .



Thus, given a mesh MS over the source surface, the
mesh Mk of the k-th level is computed as

Mk := φk(MS), k = 1, . . . , m. (28)

Finally, hexahedral elements are generated by joining
the corresponding nodes between adjacent layers of
quadrilateral meshes.

3. EXAMPLES

In order to asses the quality of the sweep algorithm
described above, seven examples are presented. They
illustrate the capabilities of the new algorithm to mesh
an extrusion geometry defined by 1.- any CAD appli-
cation; 2.- non linear sweeping trajectories; 3.- non
constant cross section along the sweep axis; 4.- non
parallel cap surfaces; and 5.- cap surfaces with differ-
ent shape and curvature. Moreover, these examples
shows that the layers of inner nodes are distributed
in such a way that a smooth transition between the
curvatures of cap surfaces is obtained. Finally, they
also illustrate that the developed algorithm, coupled
with volume decomposition, can be successfully used
to mesh a large class of three dimensional geometries.

In the first example a spring is meshed. The geome-
try is defined using a commercial CAD software. The
user assigns the element size, and the application au-
tomatically determines the non linear sweeping direc-
tion. The final mesh is presented in figure 6(a). It
is composed by 22740 hexahedral elements. As it can
be seen, a non-structured quadrilateral mesh is gener-
ated over the cap surfaces. Note that, although the
sweeping axis is non linear, high quality elements are
generated without a posteriori mesh smoothing.

The second example presents the discretization of a
bore bit with linear sweeping axis and rotated cap sur-
faces. The mesh, see figure 6(b), is composed by 21276
elements. Note that high quality elements are gener-
ated although the twisted extrusion path. Smoothing
of the final hexahedral mesh was not required.

In the third example, the extrusion volume is defined
by two cap surfaces with a different curvature. Figure
6(c) shows the inner elements of the 2000 hexahedra
final mesh. Note that the weighted function (27) gen-
erates layers of elements with a smooth transition of
the curvature from the source surface to the target sur-
face. Notice that no smoothing was applied to obtain
this mesh.

The fourth example shows the discretization of a ex-
trusion volume defined by varying and rotating cross-
sections along the sweep path. These cross-sections
are elliptical-shaped with different size, and just on the
middle of the extrusion path becomes circular. More-
over, the cap surfaces are rotated 90 degrees. The final

(a)

(b)

(c)

Figure 6: Examples of extrusion geometries meshed with
the developed sweep algorithm. (a) spring; (b) bore bit;
(c) Extrusion volume with non planar cap surfaces.

mesh is composed by 2373 elements, see figure 7(a). It
is important to point out that to obtain the final mesh
no smoothing was applied on surface and inner nodes.
In order to show the quality of elements inside the vol-



(a)

(b) (c)

Figure 7: Volume with varying elliptical cross-sections
along a twisted sweep path. (a) Layer of hexahedral
elements at fourth-level; (b) middle layer of hexahedral
elements.

ume, figure 7(b) shows the fourth layer of hexahedral
elements and figure 7(c) presents the middle layer with
one circular bounding loop.

The fifth example shows an application of the devel-
oped algorithm to an extrusion volume defined by two
non-affine cap surfaces. In this case, a smoothing al-
gorithm had been applied on the target surface mesh.
Note that in this example source surface is convex
and target surface has concavities. Therefore, folded
quadrilateral elements appear near the concavity of
the target surface. In order to unfold these quadri-
lateral elements it is mandatory to smooth the tar-
get surface mesh. For this example we have used the
smoothing technique presented in [28]. In figure 8(a)
the whole mesh, composed by 8000 hexahedral ele-
ments, is presented. Several inner layers are showed
in figures 8(b), 8(c) and 8(d). Although the cap sur-
faces ar not affine, no additional 3D global smoothing
algorithm has been required in this case.

The sixth example presents a sweep volume with non-

(a) (b)

(c) (d)

Figure 8: Sweep volume with convex source face and a
target face with some concavities. (a) Whole mesh; (b)
layer of hexahedral elements at level six; (c) layer of hex-
ahedral elements at level eleven; (d) layer of hexahedral
elements at level fifteen.

(a) (b)

Figure 9: A sweeping volume with curved source and
target surfaces. (a) Top view of the final mesh; (b)
Lateral view the final mesh.

planar source and target surfaces. Moreover, the
boundary loops of these surfaces, and the loops of
boundary nodes for the inner layers, are non-planar
too. The obtained high quality discretization is com-
posed by 4320 elements, see figure 9. Notice that no
mesh smoothing is applied to obtain the target surface
mesh and the final hexahedral mesh.



(a) (b)

(c)

Figure 10: Cube with non uniform element size distribu-
tion. (a) Detail of the final mesh at the corner where high
element concentration is prescribed; (b) View of target
surface mesh; (c) Inner layer of hexahedral elements.

The seventh example shows the discretization of a
cube with a non–constant element size distribution.
A high element concentration is prescribed at one cor-
ner of the source surface. Hence, the boundary loops
of nodes are not mutually affine. Figure 10 shows the
final mesh composed by 1090 elements. Two smooth-
ing steps were required: the first one to smooth the
target surface mesh, and the second one to improve
the overall quality of the hexahedral mesh.

The eighth example presents the application of the
developed algorithm to an extrusion geometry com-
posed by several sweep volumes. Figure 11(a) shows
the discretization of a gear. The mesh is composed by
13712 elements. A conformal mesh is generated over
the shared surfaces that compose the pieces of the vol-
ume.

The last example shows the generated mesh for a crank
shaft model, see figure 11(b). It is composed by 15800
elements. As in the previous example, a conformal
mesh is obtained for this multi-block geometry.

(a)

(b)

Figure 11: Examples of extrusion geometries meshed
with the developed sweep algorithm. (a) gear; (b) crank
shaft.

4. CONCLUSIONS

In this paper a new algorithm to project meshes be-
tween two topologically equivalent surfaces has been
presented. It has been successfully implemented in a
sweep tool to mesh extrusion geometries. This pro-
jection is determined by means of a least-squares ap-
proximation of a transformation defined between the
loops of boundary nodes of the cap surfaces in the
parametric spaces. Once the new mesh is obtained in
the parametric space, it is mapped up according the
target surface parameterization. This projection algo-
rithm has been extended to three dimensional spaces.
Then, it has been used to generate the inner nodes



for a sweep tool. In this case, the inner nodes are
located using a weighted least-squares approximation
of the transformation between the boundary nodes of
the cap surfaces and the boundary nodes of the layer.
Finally, several examples have been presented to show
the new algorithm capabilities.
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